Investigating and Characterizing the Systemic Variability When Using Generative Design for Additive Manufacturing

Author:

Peckham Owen1ORCID,Elverum Christer W.2ORCID,Hicks Ben1,Goudswaard Mark1,Snider Chris1,Steinert Martin2ORCID,Eikevåg Sindre W.12ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK

2. Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Abstract

This paper demonstrates the unpredictability of outcomes that result from compounding variabilities when using generative design (GD) coupled with additive manufacturing (AM). AM technologies offer the greatest design freedom and hence are most able to leverage the full capability of generative design (GD) tools and thus maximize potential improvements, such as weight, waste and cost reduction, strength, and part consolidation. Implicit in all studies reported in the literature is the fundamental assumption that the use of GD, irrespective of user experience or approach followed, yields high-performing and/or comparable design outputs. This work demonstrates the contrary and shows that achieving high performance with GD tools requires careful consideration of study setup and initial conditions. It is further shown that, when coupled with the inherent variability of AM parts, the potential variation in the performance of the design output can be significant, with poorer designs achieving only a fraction of that of higher-performing designs. This investigation shows how AM by Material Extrusion (MEX), which is used to manufacture components with polylactic acid (PLA), varies through different design pathways, bridging MEX and GD. Through a practical study across nine independently generated designs, the breadth of performance—due to initial GD conditions and MEX part strength unpredictability—is shown to reach 592%. This result suggest that current GD tools, including their underlying workflows and algorithms, are not sufficiently understood for users to be able to generate consistent solutions for an input case. Further, the study purports that training and consideration on GD setup are necessary to apply GD toolsets to achieve high-performing designs, particularly when applied in the context of MEX.

Funder

EPSRC via the University of Bristol DTP Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3