Transportation Simulation Modeling and Location-Based Services Data Completion Based on a Data and Model Dual-Driven Approach

Author:

Wang Hantong1,Shi Ziyi1,Chen Yong1ORCID,Zhu Zheng123ORCID,Chen Xiqun123

Affiliation:

1. Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

2. Zhejiang Provincial Engineering Research Center for Intelligent Transportation, Hangzhou 310058, China

3. Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou 310058, China

Abstract

The evolving economic and technological landscape has brought about significant changes in travel behaviors and traffic patterns. These changes have led to the emergence of complex, multi-modal travel demands that interact with transportation networks, posing new challenges in transportation analysis and control. The primary objective of this study is to address these challenges by improving transportation modeling and data completeness using advanced modeling tools and transportation big data. We propose a dual-driven simulation model that integrates transportation simulation and big data. The approach begins by utilizing initial Location-Based Services (LBS) data to establish a mesoscopic multi-modal simulation model, which is then calibrated. This calibrated model is then employed to complete the missing trajectories of the LBS data. The innovative aspect of this dual-driven simulation model lies in its novel approach to constructing transportation models and completing LBS data, thereby enhancing both the simulation accuracy and the results of missing path completion. We conduct tests using the urban area of Hangzhou as an example, and the results show that the Normalized Root Mean Square Error (NRMSE) between the average link speeds in the simulation model and in real world observation is reduced to 24.1%. In the LBS data completion process, our proposed method achieves a travel mode identification accuracy of 95.3% for private car travel. Compared to the two baseline methods, the average accuracy of completed trajectories increases by 6.31% and 2.46%, respectively.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Smart Urban Future (SURF) Laboratory, Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3