A Survey of Adversarial Attacks: An Open Issue for Deep Learning Sentiment Analysis Models

Author:

Vázquez-Hernández Monserrat1ORCID,Morales-Rosales Luis Alberto2ORCID,Algredo-Badillo Ignacio1ORCID,Fernández-Gregorio Sofía Isabel3ORCID,Rodríguez-Rangel Héctor4ORCID,Córdoba-Tlaxcalteco María-Luisa3ORCID

Affiliation:

1. Department of Computer Science, CONACYT-National Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro #1, Sta María Tonanzintla, Puebla 72840, Puebla, Mexico

2. Facultad de Ingeniería Civil, CONACYT-Universidad Michoacana de San Nicolás de Hidalgo, C. de Santiago Tapia 403, Centro, Morelia 58000, Michoacan, Mexico

3. Facultad de Estadística e Informática, Univesidad Veracruzana, Av. Xalapa, Obrero Campesina, Xalapa 91020, Veracruz, Mexico

4. Tecnológico Nacional de México, Instituto Tecnológico de Culiacán, Juan de Dios Batiz No. 310pte., Culiacán 80220, Sinaloa, Mexico

Abstract

In recent years, the use of deep learning models for deploying sentiment analysis systems has become a widespread topic due to their processing capacity and superior results on large volumes of information. However, after several years’ research, previous works have demonstrated that deep learning models are vulnerable to strategically modified inputs called adversarial examples. Adversarial examples are generated by performing perturbations on data input that are imperceptible to humans but that can fool deep learning models’ understanding of the inputs and lead to false predictions being generated. In this work, we collect, select, summarize, discuss, and comprehensively analyze research works to generate textual adversarial examples. There are already a number of reviews in the existing literature concerning attacks on deep learning models for text applications; in contrast to previous works, however, we review works mainly oriented to sentiment analysis tasks. Further, we cover the related information concerning generation of adversarial examples to make this work self-contained. Finally, we draw on the reviewed literature to discuss adversarial example design in the context of sentiment analysis tasks.

Funder

Mexican National Council of Humanities Science and Technology

Publisher

MDPI AG

Reference51 articles.

1. Shaba, M. (2021, January 14–16). A Real-Time Sentimental Analysis on E-Commerce Sites in Nigeria Using Machine Learning. Proceedings of the Hybrid Intelligent Systems: 21st International Conference on Hybrid Intelligent Systems (HIS 2021), Online.

2. Liu, B., and Zhang, L. (2012). Mining Text Data, Springer.

3. Liu, B. (2011). Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer.

4. Multimodal sentimental analysis for social media applications: A comprehensive review;Chandrasekaran;Wiley Interdiscip. Rev. Data Min. Knowl. Discov.,2021

5. Multimodal sentiment analysis based on fusion methods: A survey;Zhu;Inf. Fusion,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3