Enhancing UAV-SfM Photogrammetry for Terrain Modeling from the Perspective of Spatial Structure of Errors

Author:

Dai Wen12345ORCID,Qiu Ruibo1,Wang Bo6ORCID,Lu Wangda6,Zheng Guanghui1ORCID,Amankwah Solomon Obiri Yeboah2346,Wang Guojie3456ORCID

Affiliation:

1. School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 211800, China

2. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Nanjing 210044, China

3. Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, China

4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China

5. Institute of Earth Surface Dynamics (IDYST), University of Lausanne, 1015 Lausanne, Switzerland

6. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 211800, China

Abstract

UAV-SfM photogrammetry is widely used in remote sensing and geoscience communities. Scholars have tried to optimize UAV-SfM for terrain modeling based on analysis of error statistics like root mean squared error (RMSE), mean error (ME), and standard deviation (STD). However, the errors of terrain modeling tend to be spatially distributed. Although the error statistic can represent the magnitude of errors, revealing spatial structures of errors is still challenging. The “best practice” of UAV-SfM is lacking in research communities from the perspective of spatial structure of errors. Thus, this study designed various UAV-SfM photogrammetric scenarios and investigated the effects of image collection strategies and GCPs on terrain modeling. The error maps of different photogrammetric scenarios were calculated and quantitatively analyzed by ME, STD, and Moran’s I. The results show that: (1) A high camera inclination (20–40°) enhances UAV-SfM photogrammetry. This not only decreases the magnitude of errors, but also mitigates its spatial correlation (Moran’s I). Supplementing convergent images is valuable for reducing errors in a nadir camera block, but it is unnecessary when the image block is with a high camera angle. (2) Flying height increases the magnitude of errors (ME and STD) but does not affect the spatial structure (Moran’s I). By contrast, the camera angle is more important than the flying height for improving the spatial structure of errors. (3) A small number of GCPs rapidly reduce the magnitude of errors (ME and STD), and a further increase in GCPs has a marginal effect. However, the structure of errors (Moran’s I) can be further improved with increasing GCPs. (4) With the same number, the distribution of GCPs is critical for UAV-SfM photogrammetry. The edge distribution should be first considered, followed by the even distribution. The research findings contribute to understanding how different image collection scenarios and GCPs can influence subsequent terrain modeling accuracy, precision, and spatial structure of errors. The latter (spatial structure of errors) should be routinely assessed in evaluations of the quality of UAV-SfM photogrammetry.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3