Ship Detection via Multi-Scale Deformation Modeling and Fine Region Highlight-Based Loss Function

Author:

Li Chao1,Hu Jianming1ORCID,Wang Dawei1,Li Hanfu1,Wang Zhile1

Affiliation:

1. Research Center for Space Optical Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Ship detection in optical remote sensing images plays a vital role in numerous civil and military applications, encompassing maritime rescue, port management and sea area surveillance. However, the multi-scale and deformation characteristics of ships in remote sensing images, as well as complex scene interferences such as varying degrees of clouds, obvious shadows, and complex port facilities, pose challenges for ship detection performance. To address these problems, we propose a novel ship detection method by combining multi-scale deformation modeling and fine region highlight-based loss function. First, a visual saliency extraction network based on multiple receptive field and deformable convolution is proposed, which employs multiple receptive fields to mine the difference between the target and the background, and accurately extracts the complete features of the target through deformable convolution, thus improving the ability to distinguish the target from the complex background. Then, a customized loss function for the fine target region highlight is employed, which comprehensively considers the brightness, contrast and structural characteristics of ship targets, thus improving the classification performance in complex scenes with interferences. The experimental results on a high-quality ship dataset indicate that our method realizes state-of-the-art performance compared to eleven considered detection models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3