Implementation of Parallel Cascade Identification at Various Phases for Integrated Navigation System

Author:

Iqbal UmarORCID,Abosekeen AshrafORCID,Georgy Jacques,Umar Areejah,Noureldin AboelmagdORCID,Korenberg Michael J.

Abstract

Global navigation satellite systems (GNSS) are widely used for the navigation of land vehicles. However, the positioning accuracy of GNSS, such as the global positioning system (GPS), deteriorates in urban areas due to signal blockage and multipath effects. GNSS can be integrated with a micro-electro-mechanical system (MEMS)–based inertial navigation system (INS), such as a reduced inertial sensor system (RISS) using a Kalman filter (KF) to enhance the performance of the integrated navigation solution in GNSS challenging environments. The linearized KF cannot model the low-cost and small-size sensors due to relatively high noise levels and compound error characteristics. This paper reviews two approaches to employing parallel cascade identification (PCI), a non-linear system identification technique, augmented with KF to enhance the navigational solution. First, PCI models azimuth errors for a loosely coupled 2D RISS integrated system with GNSS to obtain a navigation solution. The experimental results demonstrated that PCI improved the integrated 2D RISS/GNSS performance by modeling linear, non-linear, and other residual azimuth errors. For the second scenario, PCI is utilized for modeling residual pseudorange correlated errors of a KF-based tightly coupled RISS/GNSS navigation solution. Experimental results have shown that PCI enhances the performance of the tightly coupled KF by modeling the non-linear pseudorange errors to provide an enhanced and more reliable solution. For the first algorithm, the results demonstrated that PCI can enhance the performance by 77% as compared to the KF solution during the GNSS outages. For the second algorithm, the performance improvement for the proposed PCI technique during the availability of three satellites was 39% compared to the KF solution.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference39 articles.

1. From Circuit Theory to System Theory

2. System identification—A survey

3. Time series analysis: Forecasting and control;Box,1970

4. Introduction to Stochastic Control Theory;Astrom,1970

5. System Identification and State Estimation;Eykhoff,1974

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A land vehicle’s INS/GNSS integrated navigation system using left invariant extended kalman filter;Journal of Physics: Conference Series;2023-11-01

2. An Automatic Transformer from Sequential to Parallel Java Code;Future Internet;2023-09-08

3. Enhanced Autonomous Vehicle Positioning Using a Loosely Coupled INS/GNSS-Based Invariant-EKF Integration;Sensors;2023-07-02

4. A Review of Sensor System Schemes for Integrated Navigation;2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA);2022-12-27

5. Design and Application of Medical Guidance Information System Based on Factor Cluster Analysis;2022 6th International Symposium on Computer Science and Intelligent Control (ISCSIC);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3