Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies

Author:

Kong ,Simonovic ,Zhang

Abstract

Resilient infrastructure systems are essential for continuous and reliable functioning of social and economic systems. Taking advantage of network theory, this paper models street network, water supply network, power grid and information infrastructure network as layers that are integrated into a multilayer network. The infrastructure interdependencies are described using five basic dependence patterns of fundamental network elements. Definitions of dynamic cascading failures and recovery mechanisms of infrastructure systems are also established. The main contribution of the paper is a new infrastructure network resilience measure capable of addressing complex infrastructure system, as well as network component (layer) interdependences. The new measure is based on infrastructure network performance, proactive absorptive capacity and reactive restorative capacity, with three resilience features of network—robustness, resourcefulness, and rapidity. The quantitative resilience measure using dynamic space-time simulation model is illustrated with a multilayer infrastructure network numerical test, including different response strategies to floods of different scale. The results demonstrate that the resilience measure provides an evaluation method of various protection and restoration strategies that will optimize the performance of interdependent infrastructure system. The sector-specific decisions could not always lead to optimal system solutions, and systems approach offers significant benefits for increasing infrastructure system resilience. This study can assist municipal decision makers in (i) better understanding the effects of different response strategies on the resilience of interdependent infrastructure system, and (ii) deciding which strategy should be adopted under different types of disasters.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3