Whole-Field Reinforcement Learning: A Fully Autonomous Aerial Scouting Method for Precision Agriculture

Author:

Zhang ZichenORCID,Boubin Jayson,Stewart Christopher,Khanal SamiORCID

Abstract

Unmanned aerial systems (UAS) are increasingly used in precision agriculture to collect crop health related data. UAS can capture data more often and more cost-effectively than sending human scouts into the field. However, in large crop fields, flight time, and hence data collection, is limited by battery life. In a conventional UAS approach, human operators are required to exchange depleted batteries many times, which can be costly and time consuming. In this study, we developed a novel, fully autonomous aerial scouting approach that preserves battery life by sampling sections of a field for sensing and predicting crop health for the whole field. Our approach uses reinforcement learning (RL) and convolutional neural networks (CNN) to accurately and autonomously sample the field. To develop and test the approach, we ran flight simulations on an aerial image dataset collected from an 80-acre corn field. The excess green vegetation Index was used as a proxy for crop health condition. Compared to the conventional UAS scouting approach, the proposed scouting approach sampled 40% of the field, predicted crop health with 89.8% accuracy, reduced labor cost by 4.8× and increased agricultural profits by 1.36×.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3