Application of Remote Sensing Methods to Study the Relief of Lowland River Valleys with a Complex Geological Structure—A Case Study of the Bug River

Author:

Ostrowski Piotr,Falkowski TomaszORCID

Abstract

River valleys of the Central European Lowlands are the zones of the highest dynamics of morphogenic processes. In the case of areas affected by glacial processes, despite their lowland nature, often they also have a complex geological structure. Sub-alluvial bedrock, composed of erosion-resistant deposits, commonly forms morphological protrusions within them. Their presence significantly affects both the course of flood flows and the valley floor relief. Effective forecasting of fluvial processes in such valley reaches requires conducting research within the entire geomorphologically active zone, both in the channel and the floodplain. The effectiveness of such research should be enhanced by simultaneous use of several different remote sensing methods, including short-range remote sensing. The verification of this hypothesis was the aim of the presented works. Such methods were used in the study of morphodynamics of a Bug valley reach. This area is characterized by a complex geological structure. High-resolution multispectral satellite images (VHRs) and a digital elevation model (DEM) based on aerial laser scanning (ALS) were used to examine the terrain relief. The morphology of the river channel itself was determined based on a series of bathymetric measurements made by a research team. Due to induced climate change and increasing maximum flow values, it can be assumed that the effect of a geological structure in the Central European Lowlands will play an increasing role. The threat and losses associated with floods will also increase. Rational flood prevention requires improvement of remote sensing research methods in lowland river valleys, especially those with complex geological structures. The valley reach presented in this article is an example of such a landform.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference65 articles.

1. Magnitude and Frequency of Forces in Geomorphic Processes

2. River patterns and their meaning

3. Geomorphic Analysis of River Systems;Fryirs,2013

4. Variability of channel processes of lowland rivers in Poland and changes of the valley floors during the Holocene;Falkowski;Biul. Geol.,1975

5. Changing fluvial processes under changing periglacial conditions;Vandenberghe;Z. Fur. Geomorphol. NF,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3