Design, Fabrication, and Characterization of a Novel Optical Six-Axis Distributed Force and Displacement Tactile Sensor for Dexterous Robotic Manipulation

Author:

Leslie Olivia1ORCID,Córdova Bulens David1ORCID,Redmond Stephen J.1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland

Abstract

Real-time multi-axis distributed tactile sensing is a critical capability if robots are to perform stable gripping and dexterous manipulation, as it provides crucial information about the sensor–object interface. In this paper, we present an optical-based six-axis tactile sensor designed in a fingertip shape for robotic dexterous manipulation. The distributed sensor can precisely estimate the local XYZ force and displacement at ten distinct locations and provide the global XYZ force and torque measurements. Its compact size, comparable to that of a human thumb, and minimal thickness allow seamless integration onto existing robotic fingers, eliminating the need for complex modifications to the gripper. The proposed sensor design uses a simple, low-cost fabrication method. Moreover, the optical transduction approach uses light angle and intensity sensing to infer force and displacement from deformations of the individual sensing units that form the overall sensor, providing distributed six-axis sensing. The local force precision at each sensing unit in the X, Y, and Z axes is 20.89 mN, 19.19 mN, and 43.22 mN, respectively, over a local force range of approximately ±1.5 N in X and Y and 0 to −2 N in Z. The local displacement precision in the X, Y, and Z axes is 56.70 μm, 50.18 μm, and 13.83 μm, respectively, over a local displacement range of ±2 mm in the XY directions and 0 to −1.5 mm in Z (i.e., compression). Additionally, the sensor can measure global torques, Tx, Ty, and Tz, with a precision of of 1.90 N-mm, 1.54 N-mm, and 1.26 N-mm, respectively. The fabricated design is showcased by integrating it with an OnRobot RG2 gripper and illustrating real-time measurements during in simple demonstration task, which generated changing global forces and torques.

Funder

SFI President of Ireland Future Research Leaders Award

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3