DC Voltage Induces Quadratic Optical Nonlinearity in Ion-Exchanged Glasses at Room Temperature

Author:

Scherbak Sergey1,Kan Gennadiy1,Tagantsev Dmitry2ORCID,Lipovskii Andrey1ORCID

Affiliation:

1. Laboratory of Optics of Heterogeneous Structures and Optical Materials, Alferov University, St. Petersburg 194021, Russia

2. Institute of Machinery, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia

Abstract

We demonstrate that applying DC voltage at room temperature to an ion-exchanged glass induces quadratic optical nonlinearity in a subsurface region of the glass. We associate this with the EFISH (Electric-Field-Induced Second Harmonic) effect due to the Maxwell–Wagner charge accumulation in the subsurface region of the glass, in which a conductivity gradient forms as a result of the ion exchange processing. The second harmonic (SH) signal from the soda–lime glass subjected to potassium-for-sodium ion exchange is comparable with one from the same glass after thermal poling. The signal linearly increases with the duration of the ion exchange. The lower mobility of the potassium ions results in a higher SH signal from the potassium-for-sodium exchanged glass than that from the silver-for-sodium ion-exchanged one. This phenomenon is resistant to thermal annealing: only a 500 °C anneal caused noticeable degradation of the SH signal after “charging” the specimen. The phenomenon found is of interest for characterizing graded conductivity regions and providing and controlling second-order optical nonlinearity in transparent isotropic media.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3