A Drag Force Model of Vertical Penetration into a Granular Medium Based on DEM Simulations and Experiments

Author:

Wang Fulin1,Chen Yuying1,Li Yang1,Li Yanjie1

Affiliation:

1. School of Technology, Beijing Forestry University, Beijing 100083, China

Abstract

The force exerted on a cylindrical intruder as it penetrates a granular medium was analyzed utilizing both experiments and the discrete element method (DEM). In this work, a series of penetration experiments were performed, considering cylindrical intruders with different nose shapes. We found that the drag force of the intruder with a hemispherical nose is close to that of those with conical noses with apex angles of 53° and 90°. The drag force of the blunt-nosed intruder is bigger; the drag force of the conical-nosed intruder with an apex angle of 37° is the smallest. We studied the interplay between the drag force on an intruder with a hemispherical nose and key variables—the penetration velocity (V), penetrator’s diameter (di), and friction coefficient (μ). From this analysis, two piecewise functions were derived: one for the average drag force versus the penetration velocity, and the other for the scaled drag force versus the friction coefficient. Furthermore, the average drag force per contact point, Fa/P, can be succinctly represented by two linear relationships: Fa/P = 0.232μ + 0.015(N) for μ<0.9, and Fa/P = 0.225(N) for μ≥0.9.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3