Deep Learning Regressors of Surface Properties from Atomic Force Microscopy Nanoindentations

Author:

Pacheco Luís R. L.12ORCID,Ferreira João P. S.1ORCID,Parente Marco P. L.12ORCID

Affiliation:

1. DEMec—Department of Mechanical Engineering, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

2. INEGI—Institute of Science and Innovation in Mechanical and Industrial Engineering, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal

Abstract

Atomic force microscopy (AFM) is a powerful technique to study the nanomechanical properties of a wide range of materials at the piconewton level. AFM force–indentation curves can be fitted with appropriate contact models, enabling the determination of material properties for a given sample. However, the analysis of large datasets comprising thousands of curves using conventional methods presents a time-intensive challenge. As a result, there is an increasing interest in exploring alternative methodologies, such as integrating machine learning (ML) models to streamline and improve the efficiency of this process. In this work, two data-driven regressors were tuned to predict the Young’s modulus and adhesion energy from force–indentation curves of soft samples (Young’s modulus up to 10 kPa). Both models were trained exclusively on synthetic data derived from the contact theories developed by Hertz as well as Johnson, Kendall and Roberts (JKR). The PyTorch library was employed to build and train the models; then, the key hyperparameters were refined by implementing the optimization framework Optuna. The first model was successfully tested with synthetic and experimental curves from AFM nanoindentations, and the second presented promising results on the synthetic data. Our work suggests that experimental data may not be essential for training data-driven models to predict surface properties from AFM nanoindentations. By delivering accurate predictions in a computationally efficient way, our regressors validate the potential of a deep learning approach in exploring AFM nanoindentations and motivate further development of similar strategies to overcome current limitations in AFM postprocessing.

Funder

FCT/MCTES

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3