The Effect of a New Approach to Cooling the External Heat Exchange Surfaces of a Car Cooler with Air Nozzles on the Cooling Process

Author:

Lipnický Marek1,Brodnianská Zuzana1ORCID

Affiliation:

1. Faculty of Technology, Technical University in Zvolen, Studentska 26, 960 01 Zvolen, Slovakia

Abstract

The paper deals with an experimental investigation of a new approach for cooling the external heat exchange surfaces of a cooler using an air pressure nozzle system. The G12+ coolant (50:50 ethylene glycol/water concentrate) is heated to an operating temperature of 80 °C and cooled by a cooler. Three ways of forced cooling of the external heat exchange surfaces of the cooler are experimentally compared—fan, nozzles, and a combination of nozzles and fan. The spacing between the nozzles and the cooler is variable from 60 to 170 mm in inline and staggered nozzle arrangements. Coolant temperatures in the cooler inlet and outlet pipes are recorded by thermistors. The air pressure nozzle system achieved an improvement in the cooling process compared to a conventional fan. At a spacing of 160 mm, the heat exchange surface is completely covered by the air flow, which leads to a reduction in cooling time and an increase in the temperature difference. The maximum temperature difference of 28.84 °C and 16.90 °C for staggered arrangement of nozzles at a spacing of 160 mm are achieved for the combination of nozzles with fan and nozzles, respectively. When comparing 60 mm and 160 mm spacing, there was an increase in thermal performance of 70.3%, 55.99%, 6.20%, and 1.83% for inline nozzles, staggered nozzles, fan with inline nozzles, and fan with staggered nozzles, respectively. The air nozzle system fully replaces the fan in the cooling process and achieves improved heat dissipation, making the cooling process significantly shorter and more efficient. In addition, the air nozzle system can also be used as an additional equipment for intensification of heat dissipation in combination with the fan.

Funder

ERDF

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3