Comparative Analysis of Commonly Used Machine Learning Approaches for Li-Ion Battery Performance Prediction and Management in Electric Vehicles

Author:

Oyucu Saadin1ORCID,Doğan Ferdi1,Aksöz Ahmet2ORCID,Biçer Emre3ORCID

Affiliation:

1. Department of Computer Engineering, Adıyaman University, Adıyaman 02040, Türkiye

2. Mobilers Group, Sivas Cumhuriyet University, Sivas 58140, Türkiye

3. Battery Research Laboratory, Sivas University of Science and Technology, Sivas 58010, Türkiye

Abstract

The significant role of Li-ion batteries (LIBs) in electric vehicles (EVs) emphasizes their advantages in terms of energy density, being lightweight, and being environmentally sustainable. Despite their obstacles, such as costs, safety concerns, and recycling challenges, LIBs are crucial in terms of the popularity of EVs. The accurate prediction and management of LIBs in EVs are essential, and machine learning-based methods have been explored in order to estimate parameters such as the state of charge (SoC), the state of health (SoH), and the state of power (SoP). Various machine learning techniques, including support vector machines, decision trees, and deep learning, have been employed for predicting LIB states. This study proposes a methodology for comparative analysis, focusing on classical and deep learning approaches, and discusses enhancements to the LSTM (long short-term memory) and Bi-LSTM (bidirectional long short-term memory) methods. Evaluation metrics such as MSE, MAE, RMSE, and R-squared are applied to assess the proposed methods’ performances. The study aims to contribute to technological advancements in the electric vehicle industry by predicting the performance of LIBs. The structure of the rest of the study is outlined, covering materials and methods, LIB data preparation, analysis, the proposal of machine learning models, evaluations, and concluding remarks, with recommendations for future studies.

Funder

European Union’s Horizon Europe Research and Innovation Program under the “Next Generation of Multifunctional, Modular and Scalable Solid State Batteries System”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3