High-Precision Calculation Using the Method of Analytical Regularization for the Cut-Off Wave Numbers for Waveguides of Arbitrary Cross Sections with Inner Conductors

Author:

Vinogradova Elena1,Smith Paul1,Shestopalov Yury23ORCID

Affiliation:

1. School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW 2109, Australia

2. Department of Electrical Engineering, Mathematics and Science, University of Gävle, 801 76 Gävle, Sweden

3. Department of Applied Mathematics, Institute of Information Technologies, Russian Technological University MIREA, 119454 Moscow, Russia

Abstract

A method for the accurate calculation of the cut-off wavenumbers of a waveguide with an arbitrary cross section and a number of inner conductors is demonstrated. Concepts of integral and infinite-matrix (summation) operator-valued functions depending nonlinearly on the frequency spectral parameter provide a secure basis for formulating the spectral problem, and the Method of Analytical Regularization is employed to implement an effective algorithm. The algorithm is based on a mathematically rigorous solution of the homogeneous Dirichlet problem for the Helmholtz equation in the interior of the waveguide, excluding the regions occupied by the inner conductor boundaries. A highly efficient method of calculating the cut-off wavenumbers and the corresponding non-trivial solutions representing the modal distribution is developed. The mathematical correctness of the problem statement, the method, and the ability to calculate the cut-off wavenumbers with any prescribed and proven accuracy provide a secure basis for treating these as “benchmark solutions”. In this paper, we use this new approach to validate previously obtained results against our benchmark solutions. Furthermore, we demonstrate its universality in solving some new problems, which are barely accessible by existing methods.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3