Text Detection and Recognition for X-ray Weld Seam Images

Author:

Zheng Qihang1,Zhang Yaping1ORCID

Affiliation:

1. School of Information, Yunnan Normal University, Kunming 650500, China

Abstract

X-ray weld seam images carry vital information about welds. Leveraging graphic–text recognition technology enables intelligent data collection in complex industrial environments, promising significant improvements in work efficiency. This study focuses on using deep learning methods to enhance the accuracy and efficiency of detecting weld seam information. We began by actively gathering a dataset of X-ray weld seam images for model training and evaluation. The study comprises two main components: text detection and text recognition. For text detection, we employed a model based on the DBNet algorithm and tailored post-processing techniques to the unique features of weld seam images. Through model training, we achieved efficient detection of the text regions, with 91% precision, 92.4% recall, and a 91.7% F1 score on the test dataset. In the text recognition phase, we introduced modules like CA, CBAM, and HFA to capture the character position information and global text features effectively. This optimization led to a remarkable text line recognition accuracy of 93.4%. In conclusion, our study provides an efficient deep learning solution for text detection and recognition in X-ray weld seam images, offering robust support for weld seam information collection in industrial manufacturing.

Funder

Yunnan Provincial Agricultural Basic Research Joint Special Project

Yunnan Ten-Thousand Talents Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3