Securing Internet of Things Applications Using Software-Defined Network-Aided Group Key Management with a Modified One-Way Function Tree

Author:

Taurshia Antony1ORCID,Kathrine Jaspher W.1ORCID,Andrew J.2ORCID,Eunice R Jennifer3

Affiliation:

1. Division of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India

2. Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India

3. Department of Mechatronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India

Abstract

Group management is practiced to deploy access control and to ease multicast and broadcast communication. However, the devices that constitute the Internet of Things (IoT) are resource-constrained, and the network of IoT is heterogeneous with variable topologies interconnected. Hence, to tackle heterogeneity, SDN-aided centralized group management as a service framework is proposed to provide a global network perspective and administration. Group management as a service includes a group key management function, which can be either centralized or decentralized. Decentralized approaches use complex cryptographic primitives, making centralized techniques the optimal option for the IoT ecosystem. It is also necessary to use a safe, scalable approach that addresses dynamic membership changes with minimal overhead to provide a centralized group key management service. A group key management strategy called a one-way Function Tree (OFT) was put forth to lower communication costs in sizable dynamic groups. The technique, however, is vulnerable to collusion attacks in which an appending and withdrawing device colludes and conspires to obtain unauthorized keys for an unauthorized timeline. Several collusion-deprived improvements to the OFT method are suggested; however, they come at an increased cost for both communication and computation. The Modified One-Way Function Tree (MOFT), a novel technique, is suggested in this proposed work. The collusion resistance of the proposed MOFT system was demonstrated via security analysis. According to performance studies, MOFT lowers communication costs when compared to the original OFT scheme. In comparison to the OFT’s collusion-deprived upgrades, the computation cost is smaller.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3