Feature Optimization-Based Machine Learning Approach for Czech Land Cover Classification Using Sentinel-2 Images

Author:

Wang Chunling12,Hang Tianyi12ORCID,Zhu Changke12,Zhang Qi3ORCID

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

Abstract

The Czech Republic is one of the countries along the Belt and Road Initiative, and classifying land cover in the Czech Republic helps to understand the distribution of its forest resources, laying the foundation for forestry cooperation between China and the Czech Republic. This study aims to develop a practical approach for land cover classification in the Czech Republic, with the goal of efficiently acquiring spatial distribution information regarding its forest resources. This approach is based on multi-level feature extraction and selection, integrated with advanced machine learning or deep learning models. To accomplish this goal, the study concentrated on two typical experimental regions in the Czech Republic and conducted a series of classification experiments, using Sentinel-2 and DEM data in 2018 as the main data sources. Initially, this study extracted various features, including spectral, vegetation, and terrain features, from the study area, then assessed and selected key features based on their importance. Additionally, this study also explored multi-level spatial contextual features to improve classification performance. The extracted features include texture and morphological features, as well as deep semantic information learned by utilizing a deep learning model, 3D CNN. Finally, an AdaBoost ensemble learning model with the random forest as the base classifier is designed to produce land cover classification maps, thus obtaining the spatial distribution of forest resources. The experimental results demonstrate that feature optimization significantly enhances the extraction of high-quality features of surface objects, thereby improving classification performance. Specifically, morphological and texture features can effectively enhance the discriminability between different features of surface objects, thereby improving classification accuracy. Utilizing deep learning networks enables more efficient extraction of deep feature information, further enhancing classification accuracy. Moreover, employing an ensemble learning model effectively boosts the accuracy of the original classification results from different individual classifiers. Ultimately, the classification accuracy of the two experimental areas reaches 92.84% and 93.83%, respectively. The user accuracies for forests are 92.24% and 93.14%, while the producer accuracies are 97.71% and 97.02%. This study applies the proposed approach for nationwide classification in the Czech Republic, resulting in an overall classification accuracy of 90.98%, with forest user accuracy at 91.97% and producer accuracy at 96.2%. The results in this study demonstrate the feasibility of combining feature optimization with the 3D Convolutional Neural Network (3DCNN) model for land cover classification. This study can serve as a reference for research methods in deep learning for land cover classification, utilizing optimized features.

Funder

National Key R&D Program of China

Emergency Open Competition Project of National Forestry and Grassland Administration

Outstanding Youth Team Project of Central Universities

Publisher

MDPI AG

Reference42 articles.

1. Review and Prospect of China-CEEC Forestry Cooperation;Lei;J. Nanjing For. Univ.,2021

2. Wang, Y., Chen, J., and Gu, Y. (2017). Forestry Development in Central and Eastern European Countries and Analysis on Future 16+1 Forestry Cooperation. For. Resour. Wanagement, 153–159.

3. Forest Cover Change Detection based on GF-1 PMS Data;Wang;Remote Sens. Technol. Appl.,2021

4. Dynamic Analysis on Vegetation Coverage Changes of Minqin Oasis Based on GF-1 Remote Sensing Image from 2013 to 2015;Zhang;J. Southwest For. Univ.,2017

5. Research Progress of Remote Sensing Classification and Change Monitoring on Forest Types;Yan;Remote Sens. Technol. Appl.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3