Effects of Buffer and Capping Layers on Thermal Stability of CoFeB/MgO Frames at Various Temperatures

Author:

Kang Byeongwoo1,Hwang Young Hyun1,Kim Yong Jin12,Lee Jong Seong1,Song Seo Hyun1,Lee Seungwon1,Lee Jisung3,Lee OukJae2,Park Seung-Young3,Ju Byeong-Kwon1ORCID

Affiliation:

1. Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea

2. Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

3. Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea

Abstract

The utilization of CoFeB thin films in spintronic devices has attracted significant attention due to their exceptional magnetic properties, which include high saturation magnetization and spin polarization. However, the effect of ambient temperature on the magnetic properties of CoFeB/MgO frames, particularly those with different buffer and capping layers, remains unexplored. Therefore, in this study, the magnetostatic and dynamic properties of CoFeB/MgO frames were investigated at various temperatures. Using vibrating sample magnetometry and ferromagnetic resonance spectroscopy, changes in key parameters such as saturation magnetization, the Gilbert damping constant, magnetic anisotropy field, in-plane uniaxial magnetic anisotropy energy, and thermal stability factor were investigated. Furthermore, the thermal stabilities of CoFeB/MgO frames with Ta buffer and capping layers were compared with those of CoFeB/MgO frames with W buffer and capping layers by examining the changes in the key parameters at various temperatures. These results reveal that the thermal stability of the latter surpassed that of the former. This study provides significant insights for the development of thermally robust spintronic devices capable of operating above room temperature.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3