Driver Identification and Detection of Drowsiness while Driving

Author:

Díaz-Santos Sonia1ORCID,Cigala-Álvarez Óscar1,Gonzalez-Sosa Ester2,Caballero-Gil Pino1,Caballero-Gil Cándido1ORCID

Affiliation:

1. Department of Computer Engineering and Systems, University of La Laguna, 38271 Tenerife, Spain

2. eXtended Reality Lab, Nokia, 28045 Madrid, Spain

Abstract

This paper introduces a cutting-edge approach that combines facial recognition and drowsiness detection technologies with Internet of Things capabilities, including 5G/6G connectivity, aimed at bolstering vehicle security and driver safety. The delineated two-phase project is tailored to strengthen security measures and address accidents stemming from driver distraction and fatigue. The initial phase is centered on facial recognition for driver authentication before vehicle initiation. Following successful authentication, the subsequent phase harnesses continuous eye monitoring features, leveraging edge computing for real-time processing to identify signs of drowsiness during the journey. Emphasis is placed on video-based identification and analysis to ensure robust drowsiness detection. Finally, the study highlights the potential of these innovations to revolutionize automotive security and accident prevention within the context of intelligent transport systems.

Funder

CDTI

the Ministry of Economy Industry and Competitiveness

European Regional Development Fund

European Union

Publisher

MDPI AG

Reference34 articles.

1. (2024, February 21). EU General Safety Regulation. Available online: https://www.continental-automotive.com/en/industry/trucks-and-buses/eu-general-safety-regulations.html.

2. Challenges of driver drowsiness prediction: The remaining steps to implementation;Perkins;IEEE Trans. Intell. Veh.,2022

3. (2024, January 12). Avance de las Principales Cifras de la Siniestralidad Vial. Available online: https://www.dgt.es/export/sites/web-DGT/.galleries/downloads/dgt-en-cifras/24h/Las-principales-cifras-2020_v6.pdf.

4. Intelligent Car Anti-Theft System Through Face Recognition Using Raspberry Pi and Global Positioning System;Kosalendra;Int. J. Anal. Exp. Modal Anal.,2020

5. (2024, February 19). Arduino-Home. Available online: https://www.arduino.cc/.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3