Investigating the Impact of Wildfires on Lake Water Quality Using Earth Observation Satellites

Author:

Caroni Rossana1,Pinardi Monica1ORCID,Free Gary1,Stroppiana Daniela1ORCID,Parigi Lorenzo1ORCID,Tellina Giulio1,Bresciani Mariano1ORCID,Albergel Clément2ORCID,Giardino Claudia1ORCID

Affiliation:

1. CNR—Institute for Electromagnetic Sensing of the Environmental, Via A. Corti 12, 20133 Milan, Italy

2. European Space Agency Climate Office, ECSAT, Harwell Campus, Oxfordshire, Didcot OX11 0FD, UK

Abstract

A study was carried out to investigate the effects of wildfires on lake water quality using a source dataset of 2024 lakes worldwide, covering different lake types and ecological settings. Satellite-derived datasets (Lakes_cci and Fire_cci) were used and a Source Pathway Receptor approach applied which was conceptually represented by fires (burned area) as a source, precipitation/drought representing transport dynamics, and lakes as the ultimate receptor. This identified 106 lakes worldwide that are likely prone to be impacted by wildfires via a terrestrial pathway. Satellite-derived chlorophyll-a (Chl-a) and turbidity variables were used as indicators to detect changes in lake water quality potentially induced by wildfires over a four-year period. The lakes with the largest catchment areas burned and characterized by regular annual fires were located in Africa. Evidence for a strong influence of wildfires was not found across the dataset examined, although clearer responses were seen for some individual lakes. However, among the hydro-morphological characteristics examined, lake depth was found to be significant in determining Chl-a concentration peaks which were higher in shallow and lower in deep lakes. Lake turbidity responses indicated a dependence on lake catchment and weather conditions. While wildfires are likely to contribute to the nutrient load of lakes as found in previous studies, it is possible that in many cases it is not a dominant pressure and that its manifestation as a signal in lake Chl-a or turbidity values depends to a large part on lake typology and catchment characteristics. Assessment of lake water quality changes six months after a fire showed that Chl-a concentrations either increased, decreased, or showed no changes in a similar number of lakes, indicating that a lake specific ecological and hydro-morphological context is important for understanding lake responses to wildfires.

Funder

Lakes_cci

Fire_cci

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3