Dhad—A Children’s Handwritten Arabic Characters Dataset for Automated Recognition

Author:

AlMuhaideb Sarab1ORCID,Altwaijry Najwa1ORCID,AlGhamdy Ahad D.1,AlKhulaiwi Daad1,AlHassan Raghad1,AlOmran Haya1,AlSalem Aliyah M.1

Affiliation:

1. Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia

Abstract

This study delves into the intricate realm of recognizing handwritten Arabic characters, specifically targeting children’s script. Given the inherent complexities of the Arabic script, encompassing semi-cursive styles, distinct character forms based on position, and the inclusion of diacritical marks, the domain demands specialized attention. While prior research has largely concentrated on adult handwriting, the spotlight here is on children’s handwritten Arabic characters, an area marked by its distinct challenges, such as variations in writing quality and increased distortions. To this end, we introduce a novel dataset, “Dhad”, refined for enhanced quality and quantity. Our investigation employs a tri-fold experimental approach, encompassing the exploration of pre-trained deep learning models (i.e., MobileNet, ResNet50, and DenseNet121), custom-designed Convolutional Neural Network (CNN) architecture, and traditional classifiers (i.e., Support Vector Machine (SVM), Random Forest (RF), and Multilayer Perceptron (MLP)), leveraging deep visual features. The results illuminate the efficacy of fine-tuned pre-existing models, the potential of custom CNN designs, and the intricacies associated with disjointed classification paradigms. The pre-trained model MobileNet achieved the best test accuracy of 93.59% on the Dhad dataset. Additionally, as a conceptual proposal, we introduce the idea of a computer application designed specifically for children aged 7–12, aimed at improving Arabic handwriting skills. Our concluding reflections emphasize the need for nuanced dataset curation, advanced model architectures, and cohesive training strategies to navigate the multifaceted challenges of Arabic character recognition.

Funder

King Saud University

Publisher

MDPI AG

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3