Numerical Heat Transfer Simulation of Oil Shale Large-Size Downhole Heater

Author:

Bu Qingfeng1234,Li Qiang1234,Li Xiaole1234

Affiliation:

1. College of Construction Engineering, Jilin University, Changchun 130026, China

2. National-Local Joint Engineering Laboratory of In-Situ Conversion, Drilling and Exploitation Technology for Oil Shale, Changchun 130026, China

3. Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Shale Oil & Gas Exploration and Development, Changchun 130026, China

4. Key Lab of Ministry of Natural Resources for Drilling and Exploitation Technology in Complex Conditions, Changchun 130026, China

Abstract

Downhole heaters are critical for effectively achieving in situ oil shale cracking. In this study, we simulate the heat transfer performance of a large-scale helical baffle downhole heater under various operational conditions. The findings indicate that at 160 m3/h and 6 kW the outlet temperature can reach 280 °C. Controlling heating power or increasing the injected gas flow effectively mitigates heat accumulation on the heating rod’s surface. The outlet temperature curve exhibits two phases. Simultaneously, a balance in energy exchange between the injected gas and heating power occurs, mitigating high-temperature hotspots. Consequently, the outlet temperature cannot attain the theoretical maximum temperature, referred to as the actual maximum temperature. Employing h/∆p13 as the indicator to evaluate heat transfer performance, optimal performance occurs at 100 m3/h. Heat transfer performance at 200 m3/h is significantly impacted by heating power, with the former being approximately 6% superior to the latter. Additionally, heat transfer performance is most stable below 160 m3/h. The gas heating process is categorized into three stages based on temperature distribution characteristics within the heater: rapid warming, stable warming, and excessive heating. The simulation findings suggest that the large-size heater can inject a higher flow rate of heat-carrying gas into the subsurface, enabling efficient oil shale in situ cracking.

Funder

National Key R&D Program of China

Young and Middle-aged Excellent Team Project for Scientific and Technological Innovation of Jilin Province of China

Independent Innovation Capacity Project of Jilin Province Development and Reform Commission

Program for JLU Science and Technology Innovative Research Team

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3