Effect of MXene Nanosheet Sticking on Supercapacitor Device Performance

Author:

Aleksandrova Mariya1ORCID,Kurtev Nikolay2,Pandiev Ivailo2ORCID

Affiliation:

1. Department of Microelectronics, Technical University of Sofia, 1756 Sofia, Bulgaria

2. Department of Electronics, Technical University of Sofia, 1756 Sofia, Bulgaria

Abstract

Supercapacitors have garnered significant interest in recent years due to their high power density, rapid charge/discharge rates, and long cycle life. MXenes, a family of two-dimensional (2D) transition metal carbides/nitrides, have emerged as promising electrode materials for supercapacitors. However, one major challenge associated with incorporating MXenes in supercapacitor structures is the occurrence of sticking, wherein individual MXene flakes agglomerate, leading to reduced electrode performance. This review paper discusses various causes of sticking and approaches to preventing it, offering insights into the design and development of high-performance MXene-based supercapacitors. The morphology and size of MXene flakes, flake surface chemistry, thickness, surface area/volume ratio, electrode processing techniques (including solvent selection, additives incorporation, and deposition technology), and environmental factors were shown to be the basic factors resulting in sticking of MXene sheets. Among the strategies to mitigate this challenge, surface functionalization and passivation, integration with polymer matrices or carbon nanomaterials, and electrode processing optimization were considered. Possible paths for optimization and future directions of study, such as novel MXene compositions, understanding of interfaces and electrode–electrolyte interactions, development of advanced electrode architectures, and integration of energy storage systems, were assumed.

Funder

European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3