Highlight Removal Emphasizing Detail Restoration

Author:

Jiang Shengrui1,Cheng Li1ORCID,Yuan Haiwen1,Li Xuan1

Affiliation:

1. School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China

Abstract

In existing highlight removal methods, research on highlights on metal surfaces is relatively limited. Therefore, this paper proposes a new, simple, effective method for removing highlights from metal surfaces, which can better restore image details. Additionally, the approach presented in this paper is highly effective for highlight removal in everyday real-world highlight scenarios. Specifically, we first separate the image’s illumination space based on the Retinex model and generate a highlight mask using the mean plus standard deviation method. Then, based on the mask, we transform the original image and the image at the corresponding mask position to the V channel of the HSV space, achieving the effective elimination of highlights. To enhance the details of the restored image, this paper introduces a method involving adaptive Laplacian sharpening operators and gradient fusion for detail enhancement at highlight removal positions. Finally, a highlight-free image with well-preserved details is obtained. In the experimental phase, we validate the proposed method using real welding seam highlight datasets and real-world highlight datasets. Compared with the existing methods, the proposed method achieves high-quality qualitative and quantitative evaluation.

Funder

Natural Science Foundation of Hubei Province

Local Standard Project of Hubei Province

Publisher

MDPI AG

Reference32 articles.

1. Using color to separate reflection components;Shafer;Color Res. Appl.,1985

2. Takechi, K., and Okabe, T. (2017, January 17–20). Diffuse-specular separation of multi-view images under varying illumination. Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China.

3. General Improvement Method of Specular Component Separation Using High-Emphasis Filter and Similarity Function;Yamamoto;ITE Trans. Media Technol. Appl.,2019

4. Rate-Distortion Driven Decomposition of Multiview Imagery to Diffuse and Specular Components;Haghighat;IEEE Trans. Image Process.,2020

5. Imai, Y., Kato, Y., Kadoi, H., Horiuchi, T., and Tominaga, S. (2011). Computational Color Imaging, Springer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3