Study on the Mechanism of Stress Sensitivity Changes in Ultra-Deep Carbonate Reservoirs

Author:

Cai Wanjie12,Jiang Shan12,Liu Hong3

Affiliation:

1. College of Geoscience, Yangtze University, Wuhan 430100, China

2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China

3. School of Science, East China University of Technology, Nanchang 330000, China

Abstract

Quantitative evaluation of stress sensitivity of ultra-deep carbonate reservoirs has been one of the challenges in exploration and development, and the problem of permeability loss law in ultra-deep carbonates under variable stress conditions has not been solved so far and further research is urgently needed. Through experimental and numerical simulation methods, the stress-sensitive evaluation equations were established based on matrix-type carbonate and fractured carbonate reservoirs, the stress-sensitive changes under different Young’s modulus were discussed, and the degree of permeability loss under different stresses was evaluated. Finally, the dual-media model of ultra-deep carbonate was established, and the practical application was carried out in the Shunbei area of the Tarim Basin. Studies have shown that (1) under the same effective stress, the stress sensitivity of matrix-type and fracture-type carbonate reservoirs is related to the Young’s modulus of the rock skeleton. In matrix-type carbonate reservoirs, rocks with a larger Young’s modulus have smaller rigidity and stronger stress sensitivity. In fracture-type carbonate reservoirs, the stress sensitivity is relatively weak under a smaller Young’s modulus, and relatively strong under a larger Young’s modulus. (2) Measured under the conditions of 87 MPa of peripheral pressure, 50 MPa of flow pressure, and 120 °C, the effective stress of matrix-type carbonate reservoirs has an exponential relationship with the permeability of reservoirs. The degree of stress sensitivity for fracture-type is generally higher than that of matrix-type reservoirs, and the smaller the Young’s modulus, the larger the difference in stress sensitivity. (3) The stress sensitivity of typical ultra-deep carbonates in the Shunbei area of the Tarim Basin is higher by establishing a dual-porosity model based on the initiating pressure gradient, which supports new evidence for the characteristics of ultra-deep carbonates with high-stress sensitivity. In actual production, the impact of stress sensitivity on the reservoir volume calculation and efficient development of ultra-deep carbonate reservoirs requires critical attention.

Funder

the Open Project of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efective Development

Publisher

MDPI AG

Reference35 articles.

1. Guo, X. (2022). Breakthroughs in deep and ultra-deep oil and gas exploration and development in China driven by key core technology breakthroughs. Energy, 46–50.

2. Chang, Q. (2022). New proven geological reserves of oil exceeded 1.6 billion tons last year. Econ. Manag.

3. Larger diatoms are more sensitive to temperature changes and prone to succumb to warming stress;Fan;Limnol. Oceanogr.,2023

4. Progress and development directions of deep oil and gas exploration and development in China;Li;China Pet. Explor.,2020

5. Theoretical progress in carbonate reservoir and discovery of large marine oil and gas fields in China;Zhao;China Pet. Explor.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3