Optimization of CO2 Injection Huff and Puff Process in Shale Reservoirs Based on NMR Technology

Author:

Gao Yang12,Liu Dehua12,Li Sichen12,Cheng Liang12,Sun Jing12

Affiliation:

1. College of Petroleum Engineering, Yangtze University, Wuhan 430100, China

2. Hubei Drilling and Recovery Engineering for Oil and Gas Key Laboratory, Wuhan 430100, China

Abstract

The pore mobilization characteristics of CO2 when in shale reservoirs is an important indicator for evaluating the effectiveness of its application for enhanced recovery in shale reservoirs, and it is important to develop a comprehensive set of physical simulation methods that are consistent with actual field operations. This has underscored the need for efficient development techniques in the energy industry. The huff-n-puff seepage oil recovery method is crucial for developing tight oil reservoirs, including shale oil. However, the small pore size and low permeability of shale render conventional indoor experiments unsuitable for shale oil cores. Consequently, there is a need to establish a fully enclosed experimental method with a high detection accuracy to optimize the huff and puff process parameters. The NMR technique identifies oil and gas transport features in nanogaps, and in this study, we use low-field nuclear magnetic resonance (NMR) online displacement technology to conduct CO2 huff and puff experiments on shale oil, covering the gas injection, well stewing, and production stages. After conducting four rounds of huff-n-puff experiments, key process parameters were optimized, including the simmering time, huff-n-puff timing, number of huff-n-puff rounds, and the amount of percolant injected. The findings reveal that as the number of huff-n-puff rounds increases, the time required for well stabilization decreases correspondingly. However, the enhancement in recovery from additional huff-n-puff rounds becomes negligible after three rounds, showing only a 1.16% improvement. CO2 re-injection is required when the pressure falls to 70% of the initiaformation pressure to ensure efficient shale oil well development. This study also indicates that the most economically beneficial results are achieved when the injection volume of the huff-n-puff process is 0.44 pore volumes (PVs).

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Reference21 articles.

1. Progress and Prospects of Horizontal Well Fracturing Technology for Shale Oil and Gas Reservoirs;Lei;Pet. Explor. Dev.,2022

2. Progress and Development Directions of Shale Oil Reservoir Stimulation Technology of China National Petroleum Corporation;Lei;Pet. Explor. Dev.,2021

3. Theory, Technology, and Prospects of Conventional and Unconventional Natural Gas;Zou;Pet. Explor. Dev.,2018

4. CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: A review;Hamza;J. Pet. Sci. Eng.,2021

5. Understanding shale gas: Recent progress and remaining challenges;Striolo;Energy Fuels,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3