Teacher–Student Model Using Grounding DINO and You Only Look Once for Multi-Sensor-Based Object Detection

Author:

Son Jinhwan1,Jung Heechul1ORCID

Affiliation:

1. Department of Artificial Intelligence, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Object detection is a crucial research topic in the fields of computer vision and artificial intelligence, involving the identification and classification of objects within images. Recent advancements in deep learning technologies, such as YOLO (You Only Look Once), Faster-R-CNN, and SSDs (Single Shot Detectors), have demonstrated high performance in object detection. This study utilizes the YOLOv8 model for real-time object detection in environments requiring fast inference speeds, specifically in CCTV and automotive dashcam scenarios. Experiments were conducted using the ‘Multi-Image Identical Situation and Object Identification Data’ provided by AI Hub, consisting of multi-image datasets captured in identical situations using CCTV, dashcams, and smartphones. Object detection experiments were performed on three types of multi-image datasets captured in identical situations. Despite the utility of YOLO, there is a need for performance improvement in the AI Hub dataset. Grounding DINO, a zero-shot object detector with a high mAP performance, is employed. While efficient auto-labeling is possible with Grounding DINO, its processing speed is slower than YOLO, making it unsuitable for real-time object detection scenarios. This study conducts object detection experiments using publicly available labels and utilizes Grounding DINO as a teacher model for auto-labeling. The generated labels are then used to train YOLO as a student model, and performance is compared and analyzed. Experimental results demonstrate that using auto-generated labels for object detection does not lead to degradation in performance. The combination of auto-labeling and manual labeling significantly enhances performance. Additionally, an analysis of datasets containing data from various devices, including CCTV, dashcams, and smartphones, reveals the impact of different device types on the recognition accuracy for distinct devices. Through Grounding DINO, this study proves the efficacy of auto-labeling technology in contributing to efficiency and performance enhancement in the field of object detection, presenting practical applicability.

Funder

MSIT (Ministry of Science and ICT), Korea, under the ITRC

National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

Reference31 articles.

1. Surveillance technology and surveillance society;Lyon;Mod. Technol.,2003

2. Lyon, D. (2010). Emerging Digital Spaces in Contemporary Society: Properties of Technology, Palgrave Macmillan.

3. Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects;Javed;Cities,2022

4. Efficient anomaly detection in surveillance videos based on multi layer perception recurrent neural network;Murugesan;Microprocess. Microsyst.,2020

5. Real time object detection and trackingsystem for video surveillance system;Jha;Multimed. Tools Appl.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3