A Health Management Technology Based on PHM for Diagnosis, Prediction of Machine Tool Servo System Failures

Author:

Cheng Qiang1,Cao Yong1,Liu Zhifeng1,Cui Lingli2,Zhang Tao1,Xu Lei3

Affiliation:

1. Institute of Advanced Manufacturing and Intelligent Technology, Department of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

2. Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China

3. Beijing Spacecrafts Co., Ltd., Beijing 100094, China

Abstract

The computer numerically controlled (CNC) system is the key functional component of CNC machine tool control systems, and the servo drive system is an important part of CNC systems. The complex working environment will lead to frequent failure of servo drive systems. Taking effective health management measures is the key to ensure the normal operation of CNC machine tools. In this paper, the comprehensive effect of fault prediction and fault diagnosis is considered for the first time, and a health management system for machine tool servo drive systems is proposed and applied to operation and maintenance management. According to the data collected by the system and related indicators, the technology can predict the state trend of equipment operation, identify the hidden fault characteristics in the data, and further diagnose the fault types. A health management system mainly includes fault prediction and fault diagnosis. The core of fault prediction is the gated recurrent unit (GRU). The attention mechanism is introduced into a GRU neural network, which can solve the long-term dependence problem and improve the model performance. At the same time, the Nadam optimizer is used to update the model parameters, which improves the convergence speed and generalization ability of the model and makes it suitable for solving the prediction problem of large-scale data. The core of fault diagnosis is the self-organizing mapping (SOM) neural network, which performs cluster analysis on data with different characteristics, to realize fault diagnosis. In addition, feature standardization and principal component analysis (PCA) are introduced to balance the influence of different feature scales, enhance the feature of fault data, and achieve data dimensionality reduction. Compared with the other two algorithms and their improved versions, the superiority of the health management system with high-dimensional data and the enhancement effect of fault identification are verified. The relative relationship between fault prediction and diagnosis is further revealed, and the adjustment idea of the production plan is provided for decision makers. The rationality and effectiveness of the system in practical application are verified by a series of tests of fault data sets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3