Study on the Influence of Deep Soil Liquefaction on the Seismic Response of Subway Stations

Author:

Shi Ming1,Tao Lianjin1,Wang Zhigang1

Affiliation:

1. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

Abstract

Subway systems are a crucial component of urban public transportation, especially in terms of safety during seismic events. Soil liquefaction triggered by earthquakes is one of the key factors that can lead to underground structural damage. This study investigates the impact of deep soil liquefaction on the response of subway station structures during seismic activity, aiming to provide evidence and suggestions for earthquake-resistant measures in underground constructions. The advanced finite element software PLAXIS was utilized for dynamic numerical simulations. Non-linear dynamic analysis methods were employed to construct models of subway stations and the surrounding soil layers, including soil–structure interactions. The UBC3D-PLM liquefaction constitutive model was applied to describe the liquefaction behavior of soil layers, while the HS constitutive model was used to depict the dynamic characteristics of non-liquefied soil layers. The study examined the influence of deep soil liquefaction on the dynamic response of subway station structures under different seismic waves. The findings indicate that deep soil liquefaction significantly increases the vertical displacement and acceleration responses of subway stations compared to non-liquefied conditions. The liquefaction behavior of deep soil layers leads to increased horizontal effective stress on both sides of the structure, thereby increasing the horizontal deformation of the structure and posing a potential threat to the safety and functionality of subway stations. This research employed detailed numerical simulation methods, incorporating the non-linear characteristics of deep soil layer liquefaction, providing an analytical framework based on regulatory standards for evaluating the impact of deep soil liquefaction on the seismic responses of subway stations. Compared to traditional studies, this paper significantly enhances simulation precision and practical applicability. Results from this research indicate that deep soil layer liquefaction poses a non-negligible risk to the structural safety of subway stations during earthquakes. Therefore, the issue of deep soil liquefaction should receive increased attention in engineering design and construction, with effective prevention and mitigation measures being implemented.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference28 articles.

1. Seismic response analysis of complex subway station structure with unequal-span in liquefiable foundation;Wang;J. Vib. Shock,2020

2. Shaking table test on liquefaction characteristics of foundation around a complicated subway station with diaphragm walls;Wang;Chin. J. Geotech. Eng.,2020

3. Influence of diaphragm wall on seismic responses of large unequal-span subway station in liquefiable soils;Wang;Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res.,2019

4. Seismic deformation characteristics of liquefaction soil-irregular section underground structure;Tang;J. Vib. Shock,2020

5. Experimental investigation of the seismic response of shallow-buried subway station in liquefied soil;Chen;Soil Dyn. Earthq. Eng.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3