Application of Unsteady Fluid Flow Simulation in the Process of Regulating an Industrial Hydraulic Network

Author:

Fil’o Milan1,Brestovič Tomáš2,Lázár Marián2ORCID,Jasminská Natália2,Dobáková Romana2ORCID,Kender Štefan3ORCID

Affiliation:

1. Department of Business Management and Environmental Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Park Komenského 5, 042 00 Košice, Slovakia

2. Department of Power Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovakia

3. Department of Automotive Production, Faculty of Mechanical Engineering, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia

Abstract

In this article, an analytical solution to a hydraulic network with a wide range of pipe lengths (up to 10 km) is proposed. The Finite-Difference Time-Domain (FDTD) method was applied with the aim of creating a regulation model for controlling both the flow rate of water from one of the two sources and the discharge pressure in the system. The system inertia requires an understanding of boundary conditions in the operation of pipeline networks, which must be known in order to regulate the required parameters with only minor deviations. The proposed model was compared to experimental data, while the mean absolute deviations in the individual system branches ranged from 1 to 5.19%. The created regulation model was subsequently tested by applying linear, sine and stochastic changes in the output load, while the ability to control the discharge pressure and the selected water flow rate was analysed. The effect of coefficient ε, which multiplies the effect of the difference between the measured and the predicted value of the discharge pressure on the boundary conditions of the discharge pressure in the system, was analysed in this paper. With the use of the proposed unsteady simulation of the fluid flow in the hydraulic system arranged in parallel and in series, the maximum deviation of the regulated pressure was 1.2% and the maximum deviation of the regulated flow rate was 5.3%.

Funder

VEGA

Slovak Research and Development Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3