A Study on the Surrogate-Based Optimization of Flexible Wings Considering a Flutter Constraint

Author:

Lunghitano Alessandra12,Afonso Frederico1ORCID,Suleman Afzal13ORCID

Affiliation:

1. IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

2. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

3. Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada

Abstract

Accounting for aeroelastic phenomena, such as flutter, in the conceptual design phase is becoming more important as the trend toward increasing the wing aspect ratio forges ahead. However, this task is computationally expensive, especially when utilizing high-fidelity simulations and numerical optimization. Thus, the development of efficient computational strategies is necessary. With this goal in mind, this work proposes a surrogate-based optimization (SBO) methodology for wing design using a predefined machine learning model. For this purpose, a custom-made Python framework was built based on different open-source codes. The test subject was the classical Goland wing, parameterized to allow for SBO. The process consists of employing a Latin Hypercube Sampling plan and subsequently simulating the resulting wing on SHARPy to generate a dataset. A regression-based machine learning model is then used to build surrogate models for lift and drag coefficients, structural mass, and flutter speed. Finally, after validating the surrogate model, a multi-objective optimization problem aiming to maximize the lift-to-drag ratio and minimize the structural mass is solved through NSGA-II, considering a flutter constraint. This SBO methodology was successfully tested, reaching reductions of three orders of magnitude in the optimization computational time.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3