Deletion of Transient Receptor Channel Vanilloid 4 Aggravates CaCl2-Induced Abdominal Aortic Aneurysm and Vascular Calcification: A Histological Study

Author:

Al-Huseini Isehaq1ORCID,Al-Ismaili Maryam1,Boudaka Ammar2ORCID,Sirasanagandla Srinivasa Rao3ORCID

Affiliation:

1. Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman

2. Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar

3. Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman

Abstract

Vascular calcification is calcium deposition occurring in the wall of blood vessels, leading to mechanical stress and rupture due to a loss of elasticity and the hardening of the vessel wall. The role of the Transient Receptor Channel Vanilloid 4 (TRPV4), a Ca2+-permeable cation channel, in the progression of vascular calcification is poorly explored. In this study, we investigated the role of TRPV4 in vascular calcification and the development of abdominal aortic aneurysm (AAA). Experimental mice were randomly divided into four groups: wild-type (WT) sham operated group, WT CaCl2-induced aortic injury, TRPV4-KO sham operated group, and TRPV4-KO CaCl2-induced aortic injury. The TRPV4-knockout (TRPV4-KO) mice and wild-type (WT) mice were subjected to the CaCl2-induced abdominal aortic injury. In histopathological analysis, the aorta of the TRPV4-KO mice showed extensive calcification in the tunica media with a significant increase in the outer diameter (p < 0.0001), luminal area (p < 0.05), and internal circumference (p < 0.05) after CaCl2 injury when compared to WT mice. Additionally, the tunica media of the TRPV4-KO mice aorta showed extensive damage with apparent elongation and disruption of the elastic lamella. These results indicate a protective function of TRPV4 against vascular calcification and the progression of AAA after CaCl2 injury.

Funder

Sultan Qaboos University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3