Real-Time Microgrid Energy Scheduling Using Meta-Reinforcement Learning

Author:

Shen Huan1ORCID,Shen Xingfa1,Chen Yiming1

Affiliation:

1. School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

With the rapid development of renewable energy and the increasing maturity of energy storage technology, microgrids are quickly becoming popular worldwide. The stochastic scheduling problem of microgrids can increase operational costs and resource wastage. In order to reduce operational costs and optimize resource utilization efficiency, the real-time scheduling of microgrids becomes particularly important. After collecting extensive data, reinforcement learning (RL) can provide good strategies. However, it cannot make quick and rational decisions in different environments. As a method with generalization ability, meta-learning can compensate for this deficiency. Therefore, this paper introduces a microgrid scheduling strategy based on RL and meta-learning. This method can quickly adapt to different environments with a small amount of training data, enabling rapid energy scheduling policy generation in the early stages of microgrid operation. This paper first establishes a microgrid model, including components such as energy storage, load, and distributed generation (DG). Then, we use a meta-reinforcement learning framework to train the initial scheduling strategy, considering the various operational constraints of the microgrid. The experimental results show that the MAML-based RL strategy has advantages in improving energy utilization and reducing operational costs in the early stages of microgrid operation. This research provides a new intelligent solution for microgrids’ efficient, stable, and economical operation in their initial stages.

Funder

Pioneer and Leading Goose R&D Program of Zhejiang

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microgrid resilient communication network architecture based on intelligent agent;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3