Methodology for Selecting a Location for a Photovoltaic Farm on the Example of Poland

Author:

Stala-Szlugaj Katarzyna1ORCID,Olczak Piotr1ORCID,Kulpa Jaroslaw1ORCID,Soltysik Maciej2ORCID

Affiliation:

1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7A, 31-261 Krakow, Poland

2. Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland

Abstract

As the LCOE for photovoltaics has decreased several times, it is once again gaining popularity. The intensification of the development of PV installations is contributing to the duck curve phenomenon in an increasing number of countries and, consequently, affecting current electricity prices. Decisions on new investments in large-scale PV sources are driven by potential economic and environmental effects, and these, in turn, are subject to locational considerations, both as to the country and its region. In calculating the economic impact of locating a 1 MWp PV farm, it was assumed that the electricity generated by the farm would be fed into the national grid, and that the life of the PV farm would be 20 years. Poland was considered as an example country for the placement of a photovoltaic farm. The authors of this paper proposed that the main verification parameter is the availability of connection capacities to feed the produced electricity into the country’s electricity grid. The methodology proposed by the authors for the selection of the location of a PV farm consists of four steps: step (i) identification and selection of the administrative division of a given country; step (ii) verification of available connection capacities; step (iii) (two stages) verification of other factors related to the location of the PV farm (e.g., information on land availability and the distance of the land from the substation), and analysis of productivity at each potential location and electricity prices achieved on the power exchange; step (iv) economic analysis of the investment—analyses of PV farm energy productivity in monetary terms on an annual basis, cost analysis (CAPEX, OPEX) and evaluation of economic efficiency (DPP, NPV, IRR). The greatest impact on the economic efficiency of a PV project is shown by the value of land (as part of CAPEX), which is specific to a given location, and revenues from energy sales, which are pretty similar for all locations.

Publisher

MDPI AG

Reference65 articles.

1. (2023, December 02). The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement.

2. IEA Renewables 2022 (2022). Analysis and Forecast to 2027, IEA.

3. (2024, March 03). REPowerEU Plan. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en.

4. (2018). Regulation EU Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action, EUR-Lex—European Union.

5. (2024, March 03). Clean Energy for All Europeans Package. Available online: https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3