Aspen Simulation Study of Dual-Fluidized Bed Biomass Gasification

Author:

Zhang Jida1,Yang Liguo2

Affiliation:

1. China Coal (Tianjin) Underground Engineering Intelligent Research Institute Co., Ltd., Tianjin 300131, China

2. Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

Abstract

This article establishes a thermodynamic model of a dual-fluidized bed biomass gasification process based on the Aspen Plus software platform and studies the operational control characteristics of the dual-fluidized bed. Firstly, the reliability of the model is verified by comparing it with the existing experimental data, and then the influence of different process parameters on the operation and gasification characteristics of the dual-fluidized bed system is investigated. The main parameters studied in the operational process include the fuel feed rate, steam/biomass ratio (S/B), air equivalent ratio (ER), and circulating bed material amount, etc. Their influence on the gasification product composition, reactor temperature, gas heat value (QV), gas production rate (GV), carbon conversion rate (ηc), and gasification efficiency (η) is investigated. The study finds that fuel feed rate and circulating bed material amount are positively correlated with QV, ηc, and η; ER is positively correlated with GV and ηc but negatively correlated with QV and η; S/B is positively correlated with GV, ηc, and η but negatively correlated with QV. The addition of CaO is beneficial for increasing QV. In actual operation, a lower reaction temperature in the gasification bed can be achieved by reducing the circulating bed material amount, and a larger temperature difference between the combustion furnace and the gasification furnace helps to further improve the quality of the gas. At the same time, GV, ηc, and η need to be considered to find the most optimized operating conditions for maximizing the benefits. The model simulation results agree well with the experimental data, providing a reference for the operation and design of dual-fluidized beds and chemical looping technology based on dual-fluidized beds.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3