Start of Injection Influence on In-Cylinder Fuel Distribution, Engine Performance and Emission Characteristic in a RCCI Marine Engine

Author:

Kakoee Alireza1ORCID,Mikulski Maciej1ORCID,Vasudev Aneesh1,Axelsson Martin2,Hyvönen Jari2,Salahi Mohammad Mahdi3,Mahmoudzadeh Andwari Amin3

Affiliation:

1. Efficient Powertrain Solutions (EPS), School of Technology and Innovation, University of Vaasa, Yliopistonranta 10, FI-65200 Vaasa, Finland

2. Engine Research and Technology Development at Wärtsilä Marine Solutions, FI-65101 Vaasa, Finland

3. Machine and Vehicle Design (MVD), Materials and Mechanical Engineering, Faculty of Technology, University of Oulu, FI-90014 Oulu, Finland

Abstract

Reactivity-controlled compression ignition (RCCI) is a promising new combustion technology for marine applications. It has offered the potential to achieve low NOx emissions and high thermal efficiency, which are both important considerations for marine engines. However, the performance of RCCI engines is sensitive to a number of factors, including the start of injection. This study used computational fluid dynamics (CFD) to investigate the effects of start of ignition (SOI) on the performance of a marine RCCI engine. The CFD model was validated against experimental data, and the results showed that the SOI has a significant impact on the combustion process. In particular, the SOI affected the distribution of fuel and air in the combustion chamber, which in turn affected the rate of heat release and the formation of pollutants. Ten different SOIs were implemented on a validated closed-loop CFD model from 96 to 42 CAD bTDC (crank angle degree before top dead center) at six-degree intervals. A chemical kinetic mechanism of 54 species and 269 reactions tuned and used for simulation of in-cylinder combustion. The results show that in early injection, high-reactivity fuel was distributed close to the liner. This distribution was around the center of late injection angles. A homogeneity study was carried out to investigate the local equivalence ratio. It showed a more homogenous mixture in early injection until 66 CAD bTDC, after which point, earlier injection timing had no effect on homogeneity. Maximum indicated mean effective pressure (IMEP) was achieved at SOI 48 CAD bTDC, and minimum amounts of THC (total hydrocarbons) and NOx were observed with middle injection timing angles around 66 CAD bTDC.

Funder

The Clean Propulsion Technologies project with financial support from Business Finland

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3