Affiliation:
1. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
Abstract
In recent years, the development of hydrogen energy has been widely discussed, particularly in combination with renewable energy sources, enabling the production of “green” hydrogen. With the significant increase in wind power generation, a promising solution for obtaining green hydrogen is the development of wind-to-hydrogen (W2H) systems. However, the high proportion of wind power and electrolyzers in a large-scale W2H system will bring about the problem of renewable energy consumption and frequency stability reduction. This paper analyzes the operational characteristics and economic feasibility of mainstream electrolyzers, leading to the proposal of a coordinated hydrogen production scheme involving both a proton exchange membrane (PEM) electrolyzer and an alkaline (ALK) electrolyzer. Subsequently, a coordinated control based on Model Predictive Control (MPC) is proposed for system frequency regulation in a large-scale W2H islanded microgrid. Finally, simulation results demonstrate that the system under PEM/ALK electrolyzers coordinated control not only flexibly accommodates fluctuating wind power but also maintains frequency stability in the face of large disturbances. Compared with the traditional system with all ALK electrolyzers, the frequency deviation of this system is reduced by 25%, the regulation time is shortened by 80%, and the demand for an energy storage system (ESS) is reduced. The result validates the effectiveness of MPC and the benefits of the PEM/ALK electrolyzers coordinated hydrogen production scheme.
Funder
science and technology project of the State Grid Corporation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献