Regional Forest Structure Evaluation Model Based on Remote Sensing and Field Survey Data

Author:

Lin Shangqin123,Wen Qingqing4,Wu Dasheng123,Huang Huajian123,Zheng Xinyu123

Affiliation:

1. College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China

2. Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China

3. Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China

4. Wucheng Nanshan Provincial Nature Reserve Management Center of Zhejiang Province, Jinhua 321000, China

Abstract

The assessment of a forest’s structure is pivotal in guiding effective forest management, conservation efforts, and ensuring sustainable development. However, traditional evaluation methods often focus on isolated forest parameters and incur substantial data acquisition costs. To address these limitations, this study introduces a cost-effective and innovative evaluation model that incorporates remote sensing imagery and machine learning algorithms. This model holistically considers the forest composition, the tree age structure, and spatial configuration. Using a comprehensive approach, the forest structure in Longquan City was evaluated at the stand level and categorized into three distinct categories: good, moderate, and poor. The construction of this evaluation model drew upon multiple data sources, namely Sentinel-2 imagery, digital elevation models (DEMs), and forest resource planning and design survey data. The model employed the Recursive Feature Elimination with Cross-Validation (RFECV) method for feature selection, alongside various machine learning algorithms. The key findings from this research are summarized as follows: The application of the RFECV method proved effective in eliminating irrelevant factors, reducing data dimensionality and, subsequently, enhancing the model’s generalizability; among the tested machine learning algorithms, the CatBoost model emerged as the most accurate and stable across all the datasets; specifically, the CatBoost model achieved an impressive overall accuracy of 88.07%, a kappa coefficient of 0.6833, and a recall rate of 76.86%. These results significantly surpass the classification precision of previous methods. The forest structure assessment of Longquan City revealed notable variations in the forest quality distribution. Notably, forests classified as “good” quality comprised 11.18% of the total, while “medium” quality forests constituted the majority at 76.77%. In contrast, “poor” quality forests accounted for a relatively minor proportion of the total, at 12.05%. The distribution findings provide valuable insights for targeted forest management and conservation strategies.

Funder

Zhejiang Forestry Science and Technology Project

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3