Study on Degradation Law and the Equivalent Thickness Model of Steel Subjected to Sulfate Corrosion

Author:

Zhang Tong1,Xu Qian2,Yang Fan1,Gao Shan3ORCID

Affiliation:

1. School of Resources and Civil Engineering, Liaoning Institute of Science and Technical, Benxi 117004, China

2. School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China

3. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150000, China

Abstract

In order to study the variation of mechanical properties of steel under acid rain corrosion conditions in northern China, monotonic tensile tests were conducted on Q235 steel with a thickness of 3.0 mm and 4.5 mm using a method of artificially prepared simulated acid rain solution for indoor accelerated corrosion. The results show that the failure mode of corroded steel standard tensile coupon includes normal fault and oblique fault. The failure patterns of the test specimen show that the thickness of the steel and corrosion rate affected the corrosion resistance. Larger thicknesses and lower corrosion rates will delay the failure mode of corrosion on steel. The strength reduction factor (Ru), deformability reduction factor (Rd) and energy absorption reduction factor (Re) decrease linearly with the increasing corrosion rate from 0% to 30%. The results are interpreted also from the microstructural point of view. The number, size, and distribution of the pits are random when the steel is subjected to sulfate corrosion. The higher the corrosion rate, the clearer, denser, and more hemispherical the corrosion pits. The microstructure of steel tensile fracture can be divided into intergranular fracture and cleavage fracture. As the corrosion rate increases, the dimples at the tensile fracture gradually disappear and the cleavage surface gradually increases. An equivalent thickness reduction model is proposed based on Faraday’s law and the meso-damage theory.

Funder

Foundation of Educational Department of Liaoning Provincial

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3