CH3NH3PbI3/Au/Mg0.2Zn0.8O Heterojunction Self-Powered Photodetectors with Suppressed Dark Current and Enhanced Detectivity

Author:

Wang Meijiao12,Zhao Man1,Jiang Dayong13

Affiliation:

1. School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. School of Optoelectronic Engineering, Changchun College of Electronic Technology, Changchun 130022, China

3. Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, China

Abstract

Interface engineering of the hole transport layer in CH3NH3PbI3 photodetectors has resulted in significantly increased carrier accumulation and dark current as well as energy band mismatch, thus achieving the goal of high-power conversion efficiency. However, the reported heterojunction perovskite photodetectors exhibit high dark currents and low responsivities. Herein, heterojunction self-powered photodetectors, composed of p-type CH3NH3PbI3 and n-type Mg0.2Zn0.8O, are prepared through the spin coating and magnetron sputtering. The obtained heterojunctions exhibit a high responsivity of 0.58 A/W, and the EQE of the CH3NH3PbI3/Au/Mg0.2Zn0.8O heterojunction self-powered photodetectors is 10.23 times that of the CH3NH3PbI3/Au photodetectors and 84.51 times that of the Mg0.2ZnO0.8/Au photodetectors. The built-in electric field of the p-n heterojunction significantly suppresses the dark current and improves the responsivity. Remarkably, in the self-supply voltage detection mode, the heterojunction achieves a high responsivity of up to 1.1 mA/W. The dark current of the CH3NH3PbI3/Au/Mg0.2Zn0.8O heterojunction self-powered photodetectors is less than 1.4 × 10−1 pA at 0 V, which is more than 10 times lower than that of the CH3NH3PbI3 photodetectors. The best value of the detectivity is as high as 4.7 × 1012 Jones. Furthermore, the heterojunction self-powered photodetectors exhibit a uniform photodetection response over a wide spectral range from 200 to 850 nm. This work provides guidance for achieving a low dark current and high detectivity for perovskite photodetectors.

Funder

National Natural Science Foundation of China

Scientific and Technological Development Project of Jilin Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3