Study on Preparation and Performance of Foamed Lightweight Soil Grouting Material for Goaf Treatment

Author:

Zhao Zhizhong12,Chen Jie234,Zhang Yangpeng245,Jiang Tinghui24,Wang Wensheng6ORCID

Affiliation:

1. Guangxi Baining Expressway Co., Ltd., Nanning 533800, China

2. Guangxi Key Lab of Road Structure and Materials, Nanning 530007, China

3. Guangxi Hetian Expressway Co., Ltd., Nanning 530022, China

4. Guangxi Transportation Science and Technology Group Co., Ltd., Nanning 530007, China

5. School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China

6. College of Transportation, Jilin University, Changchun 130025, China

Abstract

The harm goafs and other underground cavities cause to roads, which could lead to secondary geological hazards, has attracted increased attention. This study focuses on developing and evaluating the effectiveness of foamed lightweight soil grouting material for goaf treatment. The study examines the foam stability of different foaming agent dilution ratios by analyzing foam density, foaming ratio, settlement distance, and bleeding volume. The results show that there is no significant variation in foam settlement distance for different dilution ratios, and the difference in foaming ratio does not exceed 0.4 times. However, the bleeding volume is positively correlated with the dilution ratio of the foaming agent. At a dilution ratio of 60×, the bleeding volume is about 1.5 times greater than that at 40×, which reduces foam stability. Furthermore, an appropriate amount of sodium dodecyl benzene sulfonate improves both the foaming ability of the foaming agent and the stability of the foam. Additionally, this study investigates how the water–solid ratio affects the basic physical properties, water absorption, and stability of foamed lightweight soil. Foamed lightweight soil with target volumetric weights of 6.0 kN/m3 and 7.0 kN/m3 meet the flow value requirement of 170~190 mm when the water–solid ratio ranges are set at 1:1.6~1:1.9 and 1:1.9~1:2.0, respectively. With an increasing proportion of solids in the water–solid ratio, the unconfined compressive strength initially increases and then decreases after 7 and 28 days, reaching its maximum value when the water–solid ratio is between 1:1.7 and 1:1.8. The values of unconfined compressive strength at 28 days are approximately 1.5–2 times higher than those at 7 days. When the water ratio is excessively high, the water absorption rate of foamed lightweight soil increases, resulting in the formation of connected pores inside the material. Therefore, the water–solid ratio should not be set at 1:1.6. During the dry–wet cycle test, the unconfined compressive strength of foamed lightweight soil decreases, but the rate of strength loss is relatively low. The prepared foamed lightweight soil meets the durability requirements during dry–wet cycles. The outcomes of this study may aid the development of enhanced approaches for goaf treatment using foamed lightweight soil grout material.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3