Affiliation:
1. Institute of Forestry and Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia
2. Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
Abstract
Tin oxide (SnO2) is a versatile n-type semiconductor with a wide bandgap of 3.6 eV that varies as a function of its polymorph, i.e., rutile, cubic or orthorhombic. In this review, we survey the crystal and electronic structures, bandgap and defect states of SnO2. Subsequently, the significance of the defect states on the optical properties of SnO2 is overviewed. Furthermore, we examine the influence of growth methods on the morphology and phase stabilization of SnO2 for both thin-film deposition and nanoparticle synthesis. In general, thin-film growth techniques allow the stabilization of high-pressure SnO2 phases via substrate-induced strain or doping. On the other hand, sol–gel synthesis allows precipitating rutile-SnO2 nanostructures with high specific surfaces. These nanostructures display interesting electrochemical properties that are systematically examined in terms of their applicability to Li-ion battery anodes. Finally, the outlook provides the perspectives of SnO2 as a candidate material for Li-ion batteries, while addressing its sustainability.
Funder
European Regional Development Fund project
EMÜ Bridge Funding
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献