Influence of Functionally Graded Protective Coating on the Temperature in a Braking System

Author:

Yevtushenko Aleksander1ORCID,Topczewska Katarzyna1ORCID,Zamojski Przemysław1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Bialystok University of Technology (BUT), 45C Wiejska Street, 15-351 Bialystok, Poland

Abstract

A mathematical model of heat generation due to friction in a disc–pad braking system was developed with consideration of a thermal barrier coating (TBC) on the friction surface of the disc. The coating was made of functionally graded material (FGM). The three-element geometrical scheme of the system consisted of two homogeneous half-spaces (pad and disc) and a functionally graded coating (FGC) deposited on the friction surface of the disc. It was assumed that the frictional heat generated on the coating-pad contact surface was absorbed to the insides of friction elements along the normal to this surface. Thermal contact of friction between the coating and the pad as well as the heat contact between the coating and the substrate were perfect. On the basis of such assumptions, the thermal friction problem was formulated, and its exact solution was obtained for constant and linearly descending specific friction power over time. For the first case, the asymptotic solutions for small and large values of time were also found. A numerical analysis was performed on an example of the system containing a metal ceramic (FMC-11) pad, sliding on the surface of a FGC (ZrO2–Ti-6Al-4V) applied on a cast iron (ChNMKh) disc. It was established that the application of a TBC made of FGM on the surface of a disc could effectively reduce the level of temperature achieved during braking.

Funder

National Science Center

Bialystok University of Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3