The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue–Creep–Environment Interactions

Author:

Wang Minqing,Du Jinhui,Deng Qun

Abstract

In this study, we examine the mechanism of fatigue-crack propagation in 718Plus superalloy at 704 °C under fatigue–creep–environment interactions, in this case, a new turbine disc material used in aero-engines at high temperatures. The effect of creep on the fatigue-crack propagation of the superalloy at high temperature was also researched. There was an unusual inhibitory effect on the propagation of fatigue cracks in 718Plus alloy, in which the propagation rate of fatigue cracks decreased with the increase of creep time through exploration of dwell-fatigue-crack growth (DFCG) test with different creep times. In particular, under lower stress intensity factor range (ΔK) conditions, the fatigue-crack growth rate with a 90 s hold-time was one order of magnitude lower than that with a 5 s hold-time. Conversely, the gap between the two DFCGs gradually decreased with the increase of ΔK and the creep effect became less apparent. The mechanism of crack propagation in 718Plus alloy under two creep conditions was investigated from a viewpoint of the microstructure, oxidation rate at high temperature and crack path morphology under different conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference36 articles.

1. Developments in Wrought Nb Containing Superalloys (718 + 100°F);Kennedy,2004

2. Structure Stability Study on a Newly Developed Nickel-base Superalloy-ALLVAC 718Plus, Superalloys 718, 625, 706 and Derivatives;Xie;Superalloys,2005

3. High temperature fatigue of nickel-base superalloys – A review with special emphasis on deformation modes and oxidation

4. The effect of boron and zirconium on wrought structure and γ-γ′ lattice misfit characterization in nickel-based superalloy ATI 718Plus

5. Grain-boundary precipitation in Allvac 718Plus

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3