High and Low Temperature Performance and Fatigue Properties of Silica Fume/SBS Compound Modified Asphalt

Author:

Zheng Xuewen,Xu Wenyuan,Feng Huimin,Cao Kai

Abstract

In order to study the high and low temperature properties, and fatigue properties, of silica fume/SBS (Styrene-Butadiene-Styrene) compound modified asphalt (SFSCMA), dynamic shear rheometer (DSR) and bending beam rheometer (BBR) are used to study matrix asphalt (MA), silica fume modified asphalt (SFMA) (silica fume (SF) 6%), SBS modified asphalt (SBSMA) (mass ratio of SBS to Matrix asphalt 4%), and silica fume/SBS compound modified asphalt, and the high temperature rheological properties of silica fume/SBS compound modified asphalt with different silica fume additions are also studied. The modification mechanism of SFSCMA was studied by scanning electron microscope (SEM). The investigation results turn out: along with the increase in the content of SF, the high temperature performance of SFSCMA is improved significantly. When the content of SF is 6%, the high temperature performance is the best. When the content of SF is more than 6%, the high temperature property of SFSCMA is lower than that of SBSMA. It is suggested to choose 6% as the content of SF. Compared with MA, SFMA, and SBSMA, SFSCMA has excellent high temperature performance; compared with MA and SFMA, the low temperature performance of SFSCMA is improved, but it is worse than that of SBSMA. Moreover, when the temperature is lower than −30 °C, its low temperature performance is close to that of MA, or even worse than that of MA. After the compound modification of SF and SBSMA, the fatigue properties of the asphalt are improved, and the fatigue performance of SFSCMA is the best among the four kinds of asphalt. There is a cross-linking force in the network structure of SFSCMA, which restrains the flow of the whole system, so that the stability of the compound modified asphalt is significantly improved, which is favorable to the high temperature performance and fatigue resistance of the compound modified asphalt. However, due to its low mobility, it has a negative impact on the low temperature performance of the compound modified asphalt. In addition, according to previous studies, compared with diatomite, it is proven that SF can reach the same level as diatomite in improving the high temperature performance and fatigue performance of asphalt. Therefore, SF can be used as a good choice of asphalt modifier and can achieve the purpose of waste recycling and environmental protection.

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. Study on the technology of compound modified asphalt with polyphosphate and SBS;Hao;J. Highw. Transp. Res. Dev.,2014

2. PPA, PPA and SBS Composite Modified Mixture Road Performance Research;Jinmei;Highw. Eng.,2014

3. High Temperature Performance Experiment Study of PPA & SBS Composite Modified Asphalt;Wang;Highw. Eng.,2017

4. Orthogonal test research on performance of silica fume/SBS composite modified asphalt;Xu;Chin. Foreign Highw.,2016

5. Properties of rubberized concretes containing silica fume

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3