Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition

Author:

Camargo Ingrid Gabrielle do Nascimento,Hofko BernhardORCID,Mirwald Johannes,Grothe HinrichORCID

Abstract

Aging of asphalt binders is one of the main causes of its hardening, which negatively affects the cracking and fatigue resistance of asphalt binders. Understanding asphalt aging is crucial to improve the durability of asphalt pavements. In this regard, this study aims at understanding and differentiating the effect of temperature and oxygen uptake on the aging mechanisms of unmodified asphalt binders. For that, four laboratory aging procedures were employed. The two standardized procedures, rolling thin-film oven test (RTFOT) and pressure aging vessel (PAV), were considered to simulate the short-term and long-term aging of the asphalt binders, respectively. In addition, two thin-film aging test procedures, the nitrogen atmosphere oven aging test (NAAT) and ambient atmosphere oven aging test (OAAT) were employed to assess the effect of thermal and oxidative aging on unmodified asphalt binder properties. The NAAT procedure is based on the principle that the inert gas minimizes the oxidative aging. The rheological and chemical characterization showed that the high temperatures considered during the NAAT procedure did not change the properties of the unmodified asphalt binders. Therefore, it can be hypothesized that no significant thermal and oxidative aging was observed during NAAT aging procedure for the considered binders and that oxidative aging is the main cause for the hardening.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3