Abstract
This paper investigates the randomness assignment problem for a class of continuous-time stochastic nonlinear systems, where variance and entropy are employed to describe the investigated systems. In particular, the system model is formulated by a stochastic differential equation. Due to the nonlinearities of the systems, the probability density functions of the system state and system output cannot be characterised as Gaussian even if the system is subjected to Brownian motion. To deal with the non-Gaussian randomness, we present a novel backstepping-based design approach to convert the stochastic nonlinear system to a linear stochastic process, thus the variance and entropy of the system variables can be formulated analytically by the solving Fokker–Planck–Kolmogorov equation. In this way, the design parameter of the backstepping procedure can be then obtained to achieve the variance and entropy assignment. In addition, the stability of the proposed design scheme can be guaranteed and the multi-variate case is also discussed. In order to validate the design approach, the simulation results are provided to show the effectiveness of the proposed algorithm.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Subject
General Physics and Astronomy
Reference18 articles.
1. Stochastic Systems: Estimation, Identification, and Adaptive Control;Kumar,2015
2. Covariance control theory
3. Introduction to Stochastic Control Theory;Åström,2012
4. An introductory survey of probability density function control
5. Bounded Dynamic Stochastic Systems: Modelling and Control;Wang,2012
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献