The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance

Author:

Koetz JoachimORCID

Abstract

A surface modification of ultraflat gold nanotriangles (AuNTs) with different shaped nanoparticles is of special relevance for surface-enhanced Raman scattering (SERS) and the photo-catalytic activity of plasmonic substrates. Therefore, different approaches are used to verify the flat platelet morphology of the AuNTs by oriented overgrowth with metal nanoparticles. The most important part for the morphological transformation of the AuNTs is the coating layer, containing surfactants or polymers. By using well established AuNTs stabilized by a dioctyl sodium sulfosuccinate (AOT) bilayer, different strategies of surface modification with noble metal nanoparticles are possible. On the one hand undulated superstructures were synthesized by in situ growth of hemispherical gold nanoparticles in the polyethyleneimine (PEI)-coated AOT bilayer of the AuNTs. On the other hand spiked AuNTs were obtained by a direct reduction of Au3+ ions in the AOT double layer in presence of silver ions and ascorbic acid as reducing agent. Additionally, crumble topping of the smooth AuNTs can be realized after an exchange of the AOT bilayer by hyaluronic acid, followed by a silver-ion mediated reduction with ascorbic acid. Furthermore, a decoration with silver nanoparticles after coating the AOT bilayer with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC) can be realized. In that case the ultraviolet (UV)-absorption of the undulated Au@Ag nanoplatelets can be tuned depending on the degree of decoration with silver nanoparticles. Comparing the Raman scattering data for the plasmon driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4′-dimercaptoazobenzene (DMAB) one can conclude that the most important effect of surface modification with a 75 times higher enhancement factor in SERS experiments becomes available by decoration with gold spikes.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3